Correction: Ferreira, P.M., et al. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature.
نویسندگان
چکیده
Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature.
منابع مشابه
Correction: Ferreira, P.M., et al. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature. Sensors 2012, 12, 15750-15777
متن کامل
ارزیابی دو روش تجربی و مدلهای شبکه عصبی مصنوعی برای برآورد تابش خورشید رسیده به زمین- مطالعه موردی در جنوب شرق تهران
Daily solar radiation intercepted at the earth’s surface is an input required for water resources, environmental and agricultural studies. However, the measurement of this parameter can only be done in a few places. This has led researchers to develop a number of methods for estimating solar radiation based on frequently available meteorological records such as hours of sunshine or air temperat...
متن کاملارزیابی دقت روشهای شبکه عصبی مصنوعی و عصبی- فازی در شبیهسازی تابش کل خورشیدی
Solar radiation is an important climate parameter which can affect hydrological and meteorological processes. This parameter is a key element in development of solar energy application studies. The purpose of this study is the assessment of artificial intelligence techniques in prediction of solar radiation (Rs) using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (AN...
متن کاملGlobal Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network
The optimum design of solar energy systems strongly depends on the accuracy of solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322 N lo...
متن کاملLand surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures
[1] A neural network inversion scheme including first guess information has been developed to retrieve surface temperature Ts, along with atmospheric water vapor, cloud liquid water, and surface emissivities over land from a combined analysis of Special Sensor Microwave/Imager (SSM/I) and International Satellite Cloud Climatology Project (ISCCP) data. In the absence of routine in situ surface s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2012